MiCOM P632
Parameter Subsets

 

Parameter

Address

 

Default

Min

Max

Unit

Logic Diagram

Main function

MAIN: Vnom prim. end a PSx

019 017

019 057

019 061

019 065

 

110.0

0.1

1500.0

kV

 

 

Setting for the primary nominal voltage at end a of the transformer.

 

MAIN: Vnom prim. end b PSx

019 018

019 058

019 062

019 066

 

110.0

0.1

1500.0

kV

 

 

Setting for the primary nominal voltage at end b of the transformer.

 

MAIN: Phase reversal a PSx

010 200

010 201

010 202

010 203

 

0: No swap

 

 

MAIN: Phase reversal b PSx

010 204

010 205

010 206

010 207

 

0: No swap

 

 

Setting for the phase reversal function (see description for function group MAIN) for electrical machines in pumped storage power stations.

Phases to be reversed (A-B swapped, A-B swapped or A-B swapped) may be set separately for each end.

At the same time the display MAIN: Phase reversal activ will be triggered unless the setting is No swap.

 

Parameter

Address

 

Default

Min

Max

Unit

Logic Diagram

Differential pro­tec­tion

DIFF: Enable PSx

072 152

073 152

074 152

075 152

 

0: No

 

 

This setting defines the parameter subset (setting group) in which differential protection is enabled.

 

DIFF: Vec.gr. ends a-b PSx

019 010

019 040

019 041

019 042

 

0

0

11

 

Fig. 3-95

 

For standard connection of the P632 (see Chapter “Installation and Connection”), the vector group ID needs to be entered.  For connection reversal applied to one individual end, this can be taken into account in setting (MAIN: Conn.meas.circ. IP,a or MAIN: Conn.meas.circ. IP,b).  The following algorithms apply:

Setting = ID + 6

If the addition results in a value > 12 then:

Setting = (ID + 6) – 12

If the phase currents of the low and high voltage sides are exchanged and if this is not accounted for by the settings at MAIN: Conn.meas,circ. IP,z (where z is end a,b,c or d) and  MAIN: Conn.meas,circ. IY,z  (where z is end a,b or c) then the algorithm is:

Setting = 12 – ID

If an A-C-B phase sequence (or "anti-clockwise rotating field") is present then this should be entered as a setting at the P632.  In this case, the P632 will automatically form the complementary value of the set vector group ID to the number 12 (vector group ID = 12 – set ID).

For application of the P632 as machine protection, the setting must be 0 or 6 depending on the current transformer connection.

 

DIFF: Idiff> PSx

072 142

073 142

074 142

075 142

 

0.20

0.10

2.50

Iref

Fig. 3-99

 

Operate value of the differential protection function as referred to the reference current of the relevant transformer end.

 

DIFF: Idiff>> PSx

072 143

073 143

074 143

075 143

 

15.0

2.5

30.0

Iref

Fig. 3-99

 

Threshold value of the differential current for deactivation of the inrush stabilization function (harmonic restraint) and of the overfluxing restraint.

Note: If the threshold is set too high, it is possible for the P632 not to trip in the presence of internal faults with transformer saturation.

 

DIFF: Idiff>>> PSx

072 144

073 144

074 144

075 144

 

30.0

2.5

30.0

Iref

Fig. 3-99

 

This setting defines the threshold value for the differential current where the differential protection is triggered regardless of restraining quantity, inrush stabilization and saturation discriminator.

Note: If the threshold is set too low, the P632 can trip in the presence of external faults with transformer saturation.

 

DIFF: Idiff>(CTS) PSx

080 000

081 000

082 000

083 000

 

0.20

0.10

30.00

Iref

 

 

If the Current Transformer Supervision (CTS) function has detected a CT failure, then the basic operating threshold DIFF: Idiff> PSx can be raised to a settable safe value DIFF: Idiff>(CTS) PSx.  Please refer to the CTS function section for more details.

 

DIFF: m1 PSx

072 145

073 145

074 145

075 145

 

0.30

0.10

1.50

 

Fig. 3-99

 

 Gradient of the differential protection tripping characteristic for the range 0.5·Idiff> < IR ≤ IR,m1.

 

DIFF: m2 PSx

072 146

073 146

074 146

075 146

 

0.70

0.10

1.50

 

Fig. 3-99

 

Gradient of the differential protection tripping characteristic for the range IR > IR,m2.

 

DIFF: IR,m2 PSx

072 147

073 147

074 147

075 147

 

4.0

1.5

10.0

Iref

Fig. 3-99

 

Knee point where the tripping characteristic continues with the setting for gradient m2.

 

DIFF: Op.mode rush rst.PSx

072 148

073 148

074 148

075 148

 

1: Not phase-selective

Fig. 3-99

 

Setting for the operating mode of the inrush stabilization function.

For application of the P632 as machine protection, harmonic restraint can be disabled by way of this setting.  For application of the P632 as transformer protection, the user can select whether the harmonic restraint should operate in cross-blocking mode or selectively for one measuring system.

 

DIFF: RushI(2f0)/I(f0) PSx

072 159

073 159

074 159

075 159

 

20

10

50

%

Fig. 3-100

 

Operate value of the inrush stabilization (harmonic restraint) of differential protection as a ratio of the second harmonic with the fundamental component of the differential current, in percent.

 

DIFF: 0-seq. filt.a en.PSx

072 155

073 155

074 155

075 155

 

1: Yes

Fig. 3-95

 

Enabling or disabling the zero-sequence filtering of winding a.

 

DIFF: 0-seq. filt.b en.PSx

072 156

073 156

074 156

075 156

 

1: Yes

Fig. 3-95

 

Enabling or disabling the zero-sequence filtering of winding b.

 

DIFF: Overflux.bl. en. PSx

072 158

073 158

074 158

075 158

 

0: No

Fig. 3-102

 

Enabling or disabling the overfluxing restraint.

 

DIFF: Ov. I(5f0)/I(f0) PSx

072 160

073 160

074 160

075 160

 

20

10

80

%

Fig. 3-102

 

Operate value of the overfluxing restraint of differential protection as ratio of the fifth harmonic component to the fundamental wave for the differential current, in percent.

 

DIFF: Op.del.,trip sig.PSx

010 162

010 163

010 164

010 165

 

0.00

0.00

100.00

s

Fig. 3-99

 

The time-delay of the differential protection trip signal can be set here.

 

DIFF: Hyst. effective PSx

072 006

073 006

074 006

075 006

 

1: Yes

 

 

The hysteresis of the pick-up characteristics may be disabled or enabled.

 

Parameter

Address

 

Default

Min

Max

Unit

Logic Diagram

Ground differential pro­tec­tion

REF_1: Enable PSx

072 141

073 141

074 141

075 141

 

0: No

Fig. 3-104

 

REF_2: Enable PSx

072 161

073 161

074 161

075 161

 

0: No

 

 

This setting defines the parameter subset in which ground differential protection is enabled.

 

REF_1: Operating mode PSx

072 149

073 149

074 149

075 149

 

1: Low imped. / sum(IP)

 

 

REF_2: Operating mode PSx

072 169

073 169

074 169

075 169

 

1: Low imped. / sum(IP)

 

 

Three operating modes can be selected.  The Low imped. / sum(IP) operating mode is the existing low impedance ground differential protection mode (already existing since version P632–602).  The alternative selectable modes are Low imped. / IP,max and High impedance.

 

REF_1: Bl.f.DIFF trigg. PSx

080 006

081 006

082 006

083 006

 

0: No

Fig. 3-104

 

REF_2: Bl.f.DIFF trigg. PSx

080 007

081 007

082 007

083 007

 

0: No

 

 

This setting determines whether the ground-differential short circuit protection is blocked in case of a starting of the differential protection.

 

REF_1: CTS effective PSx

080 003

081 003

082 003

083 003

 

0: No

 

 

REF_2: CTS effective PSx

080 004

081 004

082 004

083 004

 

0: No

 

 

This setting determines whether the ground-differential short circuit protection associated with the corresponding CTS signal, CTS: Alarm end a (or CTS: Alarm end b etc.), is blocked.

 

REF_1: Idiff> PSx

072 150

073 150

074 150

075 150

 

0.20

0.10

1.00

Iref

Fig. 3-108

 

REF_2: Idiff> PSx

072 170

073 170

074 170

075 170

 

0.20

0.10

1.00

Iref

 

 

Operate value of the ground differential protection function as referred to the reference current of the relevant transformer end.

 

REF_1: Idiff>>> PSx

072 151

073 151

074 151

075 151

 

10.0

2.5

30.0

Iref

Fig. 3-108

 

REF_2: Idiff>>> PSx

072 171

073 171

074 171

075 171

 

10.0

2.5

30.0

Iref

 

 

Threshold value of the differential current for tripping by the ground differential protection function independently of the restraining variable.

 

REF_1: m1 PSx

072 162

073 162

074 162

075 162

 

0.20

0.00

1.00

 

Fig. 3-108

 

REF_2: m1 PSx

072 172

073 172

074 172

075 172

 

0.20

0.00

1.00

 

 

 

Gradient of the differential protection tripping characteristic with the operating mode 'Low imped. / sum(IP)'.

Gradient of the differential protection tripping characteristic for the range IR < IR,m1 with the operating modes 'Low imped. / IP,max ' and 'High impedance'.

 

REF_1: m2 PSx

072 163

073 163

074 163

075 163

 

1.50

0.15

1.50

 

Fig. 3-108

 

REF_2: m2 PSx

072 165

073 165

074 165

075 165

 

1.50

0.15

1.50

 

 

 

Gradient of the differential protection tripping characteristic for the range IR > IR,m2 with the operating modes 'Low imped. / IP,max ' and 'High impedance'.

 

REF_1: IR,m2 PSx

072 164

073 164

074 164

075 164

 

1.00

0.10

1.50

Iref

Fig. 3-108

 

REF_2: IR,m2 PSx

072 166

073 166

074 166

075 166

 

1.00

0.10

1.50

Iref

 

 

Knee point from which the characteristic runs with a set gradient of m2 (operating mode 'Low imped. / IP,max').

 

Parameter

Address

 

Default

Min

Max

Unit

Logic Diagram

Def­i­nite-time over­cur­rent pro­tec­tion

DTOC1: Enable PSx

076 050

077 050

078 050

079 050

 

0: No

Fig. 3-112

 

DTOC2: Enable PSx

076 070

077 070

078 070

079 070

 

0: No

 

 

This setting specifies the parameter subset to be enabled for definite-time overcurrent protection.

 

DTOC1: Block tim.st. IN PSx

076 067

077 067

078 067

079 067

 

0: Without

Fig. 3-115

 

DTOC2: Block tim.st. IN PSx

076 087

077 087

078 087

079 087

 

0: Without

 

 

This setting defines whether blocking of the residual current stages will take place for single-pole or multi-pole phase current starting.

 

DTOC1: Gen.starting modePSx

076 066

077 066

078 066

079 066

 

1: With start. IN/Ineg

Fig. 3-116

 

DTOC2: Gen.starting modePSx

076 086

077 086

078 086

079 086

 

1: With start. IN/Ineg

 

 

This setting defines whether starting of the residual current stages will result in the formation of the general starting signal of DTOC protection.

 

DTOC1: tGS PSx

076 065

077 065

078 065

079 065

 

0.00

0.00

100.00

s

Fig. 3-116

 

DTOC2: tGS PSx

076 085

077 085

078 085

079 085

 

0.00

0.00

100.00

s

 

 

Setting for the operate delay of the general starting signal of DTOC protection.

 

DTOC1: Rush restr.enabl PSx

076 063

077 063

078 063

079 063

 

0: No

Fig. 3-113

 

DTOC2: Rush restr.enabl PSx

076 083

077 083

078 083

079 083

 

0: No

 

 

Setting as to whether the inrush stabilization function (harmonic restraint) of differential protection shall be able to block the definite-time overcurrent protection function.

 

DTOC1: I> PSx

076 051

077 051

078 051

079 051

 

1.00

0.10

30.00

Inom

Fig. 3-113

 

DTOC2: I> PSx

076 071

077 071

078 071

079 071

 

1.00

0.10

30.00

Inom

 

 

Setting for operate value I>.

 

DTOC1: I>> PSx

076 052

077 052

078 052

079 052

 

4.00

0.10

30.00

Inom

Fig. 3-113

 

DTOC2: I>> PSx

076 072

077 072

078 072

079 072

 

4.00

0.10

30.00

Inom

 

 

Setting for operate value I>>.

 

DTOC1: I>>> PSx

076 053

077 053

078 053

079 053

 

Blocked

0.10

30.00

Inom

Fig. 3-113

 

DTOC2: I>>> PSx

076 163

077 163

078 163

079 163

 

Blocked

0.10

30.00

Inom

 

 

Setting for operate value I>>>.

 

DTOC1: I> dynamic PSx

076 151

077 151

078 151

079 151

 

1.00

0.10

30.00

Inom

Fig. 3-113

 

DTOC2: I> dynamic PSx

076 161

077 161

078 161

079 161

 

1.00

0.10

30.00

Inom

 

 

Setting for operate value I> in dynamic mode.  This operate value is only effective while the hold time for dynamic parameters is elapsing.

 

DTOC1: I>> dynamic PSx

076 152

077 152

078 152

079 152

 

1.00

0.10

30.00

Inom

Fig. 3-113

 

DTOC2: I>> dynamic PSx

076 162

077 162

078 162

079 162

 

1.00

0.10

30.00

Inom

 

 

Setting for operate value I>> in dynamic mode.  This operate value is only effective while the hold time for dynamic parameters is elapsing.

 

DTOC1: I>>> dynamic PSx

076 153

077 153

078 153

079 153

 

1.00

0.10

30.00

Inom

Fig. 3-113

 

DTOC2: I>>> dynamic PSx

076 173

077 173

078 173

079 173

 

1.00

0.10

30.00

Inom

 

 

Setting for operate value I>>> in dynamic mode.  This operate value is only effective while the hold time for dynamic parameters is elapsing.

 

DTOC1: tI> PSx

076 057

077 057

078 057

079 057

 

1.00

0.00

100.00

s

Fig. 3-113

 

DTOC2: tI> PSx

076 077

077 077

078 077

079 077

 

1.00

0.00

100.00

s

 

 

Setting for operate delay I>.

 

DTOC1: tI>> PSx

076 058

077 058

078 058

079 058

 

0.50

0.00

100.00

s

Fig. 3-113

 

DTOC2: tI>> PSx

076 078

077 078

078 078

079 078

 

0.50

0.00

100.00

s

 

 

Setting for operate delay I>>.

 

DTOC1: tI>>> PSx

076 059

077 059

078 059

079 059

 

0.50

0.00

100.00

s

Fig. 3-113

 

DTOC2: tI>>> PSx

076 169

077 169

078 169

079 169

 

0.50

0.00

100.00

s

 

 

Setting for the operate delay of the I>>> stage.

 

DTOC1: Ineg> PSx

076 197

077 197

078 197

079 197

 

0.25

0.10

8.00

Inom

Fig. 3-114

 

DTOC2: Ineg> PSx

076 207

077 207

078 207

079 207

 

0.25

0.10

8.00

Inom

 

 

Setting for the operate value of the Ineg> stage.

 

DTOC1: Ineg>> PSx

076 198

077 198

078 198

079 198

 

Blocked

0.10

8.00

Inom

Fig. 3-114

 

DTOC2: Ineg>> PSx

076 208

077 208

078 208

079 208

 

Blocked

0.10

8.00

Inom

 

 

Setting for the operate value of the Ineg>> stage.

 

DTOC1: Ineg>>> PSx

076 199

077 199

078 199

079 199

 

Blocked

0.10

8.00

Inom

Fig. 3-114

 

DTOC2: Ineg>>> PSx

076 209

077 209

078 209

079 209

 

Blocked

0.10

8.00

Inom

 

 

Setting for the operate value of the Ineg>>> stage.

 

DTOC1: Ineg> dynamic PSx

076 200

077 200

078 200

079 200

 

1.00

0.10

8.00

Inom

Fig. 3-114

 

DTOC2: Ineg> dynamic PSx

076 210

077 210

078 210

079 210

 

1.00

0.10

8.00

Inom

 

 

Setting for operate value Ineg> dynamic. (Ineg = negative-sequence current)

This operate value is effective only while the timer stage MAIN: Hold time dyn.param. is elapsing.

 

DTOC1: Ineg>> dynamic PSx

076 201

077 201

078 201

079 201

 

1.00

0.10

8.00

Inom

Fig. 3-114

 

DTOC2: Ineg>> dynamic PSx

076 211

077 211

078 211

079 211

 

1.00

0.10

8.00

Inom

 

 

Setting for operate value Ineg>> dynamic. (Ineg = negative-sequence current)

This operate value is effective only while the timer stage MAIN: Hold time dyn.param. is elapsing.

 

DTOC1: Ineg>>> dynamic PSx

076 202

077 202

078 202

079 202

 

1.00

0.10

8.00

Inom

 

 

DTOC2: Ineg>>> dynamic PSx

076 212

077 212

078 212

079 212

 

1.00

0.10

8.00

Inom

 

 

Setting for operate value Ineg>>> dynamic. (Ineg = negative-sequence current)

This operate value is effective only while the timer stage MAIN: Hold time dyn.param. is elapsing.

 

DTOC1: tIneg> PSx

076 203

077 203

078 203

079 203

 

1.00

0.00

100.00

s

Fig. 3-114

 

DTOC2: tIneg> PSx

076 213

077 213

078 213

079 213

 

1.00

0.00

100.00

s

 

 

Setting for the operate delay of the Ineg> stage.

 

DTOC1: tIneg>> PSx

076 204

077 204

078 204

079 204

 

0.50

0.00

100.00

s

Fig. 3-114

 

DTOC2: tIneg>> PSx

076 214

077 214

078 214

079 214

 

0.50

0.00

100.00

s

 

 

Setting for the operate delay of the Ineg>> stage.

 

DTOC1: tIneg>>> PSx

076 205

077 205

078 205

079 205

 

0.50

0.00

100.00

s

Fig. 3-114

 

DTOC2: tIneg>>> PSx

076 215

077 215

078 215

079 215

 

0.50

0.00

100.00

s

 

 

Setting for the operate delay of the Ineg>>> stage.

 

DTOC1: IN> PSx

076 054

077 054

078 054

079 054

 

0.25

0.10

8.00

Inom

Fig. 3-115

 

DTOC2: IN> PSx

076 164

077 164

078 164

079 164

 

0.25

0.10

8.00

Inom

 

 

Setting for operate value IN>.

 

DTOC1: IN>> PSx

076 055

077 055

078 055

079 055

 

Blocked

0.10

8.00

Inom

Fig. 3-115

 

DTOC2: IN>> PSx

076 165

077 165

078 165

079 165

 

Blocked

0.10

8.00

Inom

 

 

Setting for operate value IN>>.

 

DTOC1: IN>>> PSx

076 056

077 056

078 056

079 056

 

Blocked

0.10

8.00

Inom

Fig. 3-115

 

DTOC2: IN>>> PSx

076 166

077 166

078 166

079 166

 

Blocked

0.10

8.00

Inom

 

 

Setting for operate value IN>>>.

 

DTOC1: IN> dynamic PSx

076 154

077 154

078 154

079 154

 

1.00

0.10

8.00

Inom

Fig. 3-115

 

DTOC2: IN> dynamic PSx

076 174

077 174

078 174

079 174

 

1.00

0.10

8.00

Inom

 

 

Setting for operate value IN> in dynamic mode.  This operate value is only effective while the hold time for dynamic parameters is elapsing.

 

DTOC1: IN>> dynamic PSx

076 155

077 155

078 155

079 155

 

1.00

0.10

8.00

Inom

Fig. 3-115

 

DTOC2: IN>> dynamic PSx

076 175

077 175

078 175

079 175

 

1.00

0.10

8.00

Inom

 

 

Setting for operate value IN>> in dynamic mode.  This operate value is only effective while the hold time for dynamic parameters is elapsing.

 

DTOC1: IN>>> dynamic PSx

076 156

077 156

078 156

079 156

 

1.00

0.10

8.00

Inom

Fig. 3-115

 

DTOC2: IN>>> dynamic PSx

076 176

077 176

078 176

079 176

 

1.00

0.10

8.00

Inom

 

 

Setting for operate value IN>>> in dynamic mode.  This operate value is only effective while the hold time for dynamic parameters is elapsing.

 

DTOC1: tIN> PSx

076 060

077 060

078 060

079 060

 

1.00

0.00

100.00

s

Fig. 3-115

 

DTOC2: tIN> PSx

076 170

077 170

078 170

079 170

 

1.00

0.00

100.00

s

 

 

Setting for the operate delay of the IN> stage.

 

DTOC1: tIN>> PSx

076 061

077 061

078 061

079 061

 

0.50

0.00

100.00

s

Fig. 3-115

 

DTOC2: tIN>> PSx

076 171

077 171

078 171

079 171

 

0.50

0.00

100.00

s

 

 

Setting for the operate delay of the IN>> stage.

 

DTOC1: tIN>>> PSx

076 062

077 062

078 062

079 062

 

0.50

0.00

100.00

s

Fig. 3-115

 

DTOC2: tIN>>> PSx

076 172

077 172

078 172

079 172

 

0.50

0.00

100.00

s

 

 

Setting for the operate delay of the IN>>> stage.

 

Parameter

Address

 

Default

Min

Max

Unit

Logic Diagram

Inverse-time over­cur­rent pro­tec­tion

IDMT1: Enable PSx

081 050

082 050

083 050

084 050

 

0: No

Fig. 3-119

 

IDMT2: Enable PSx

081 170

082 170

083 170

084 170

 

0: No

 

 

This setting specifies the parameter subset to be enabled for inverse-time overcurrent protection.

 

IDMT1: Block tim.st. IN PSx

081 068

082 068

083 068

084 068

 

0: Without

 

 

IDMT2: Block tim.st. IN PSx

081 188

082 188

083 188

084 188

 

0: Without

 

 

This setting defines whether a blocking of the residual and negative-sequence current stages should take place for single-pole startings or multi-pole phase current startings.

 

IDMT1: Gen.starting modePSx

081 059

082 059

083 059

084 059

 

1: With start. IN/Ineg

Fig. 3-128

 

IDMT2: Gen.starting modePSx

081 179

082 179

083 179

084 179

 

1: With start. IN/Ineg

 

 

This setting defines whether starting of the residual current stages will result in the formation of the general starting signal of IDMT protection.

 

IDMT1: tGS PSx

081 058

082 058

083 058

084 058

 

0.00

0.00

100.00

s

Fig. 3-128

 

IDMT2: tGS PSx

081 178

082 178

083 178

084 178

 

0.00

0.00

100.00

s

 

 

Setting for the operate delay of the general starting signal of IDMT protection.

 

IDMT1: Rush restr.enabl PSx

081 060

082 060

083 060

084 060

 

0: No

Fig. 3-124

Fig. 3-125

 

IDMT2: Rush restr.enabl PSx

081 180

082 180

083 180

084 180

 

0: No

 

 

Setting as to whether the inrush restraint of differential protection shall be able to block the inverse-time overcurrent protection function.

 

IDMT1: Iref,P PSx

081 051

082 051

083 051

084 051

 

1.00

0.10

4.00

Inom

Fig. 3-124

 

IDMT2: Iref,P PSx

081 171

082 171

083 171

084 171

 

1.00

0.10

4.00

Inom

 

 

Setting for the reference current (phase current system).

 

IDMT1: Iref,P dynamic PSx

081 052

082 052

083 052

084 052

 

1.00

0.10

4.00

Inom

Fig. 3-124

 

IDMT2: Iref,P dynamic PSx

081 172

082 172

083 172

084 172

 

1.00

0.10

4.00

Inom

 

 

Setting for the reference current (phase current system) in dynamic mode.  This operate value is only effective while the hold time for dynamic parameters is elapsing.

 

IDMT1: Characteristic P PSx

081 053

082 053

083 053

084 053

 

0: Definite Time

Fig. 3-124

 

IDMT2: Characteristic P PSx

081 173

082 173

083 173

084 173

 

0: Definite Time

 

 

Setting for the tripping characteristic (phase current system).

 

IDMT1: Factor kt,P PSx

081 054

082 054

083 054

084 054

 

1.00

0.05

10.00

 

Fig. 3-124

 

IDMT2: Factor kt,P PSx

081 174

082 174

083 174

084 174

 

1.00

0.05

10.00

 

 

 

Setting for the factor kt,P of the starting characteristic (phase current system).

 

IDMT1: Min. trip t. P PSx

081 057

082 057

083 057

084 057

 

1.00

0.00

10.00

s

Fig. 3-124

 

IDMT2: Min. trip t. P PSx

081 177

082 177

083 177

084 177

 

1.00

0.00

10.00

s

 

 

Setting for the minimum trip time (phase current system).

 

IDMT1: Hold time P PSx

081 055

082 055

083 055

084 055

 

0.00

0.00

600.00

s

Fig. 3-124

 

IDMT2: Hold time P PSx

081 175

082 175

083 175

084 175

 

0.00

0.00

600.00

s

 

 

Setting for the hold time for storing the starting time once the starting has dropped out (phase current system).

 

IDMT1: Release P PSx

081 056

082 056

083 056

084 056

 

1: Without delay

Fig. 3-124

 

IDMT2: Release P PSx

081 176

082 176

083 176

084 176

 

1: Without delay

 

 

Setting for the reset characteristic (phase current system).

 

IDMT1: Iref,neg PSx

081 111

082 111

083 111

084 111

 

Blocked

0.01

0.80

Inom

Fig. 3-125

 

IDMT2: Iref,neg PSx

081 121

082 121

083 121

084 121

 

Blocked

0.01

0.80

Inom

 

 

Setting for the reference current (negative-sequence current system).

 

IDMT1: Iref,neg dynamic PSx

081 112

082 112

083 112

084 112

 

Blocked

0.01

0.80

Inom

Fig. 3-125

 

IDMT2: Iref,neg dynamic PSx

081 122

082 122

083 122

084 122

 

Blocked

0.01

0.80

Inom

 

 

Setting for the reference current (negative-sequence current system).

This value is only effective while the hold time for dynamic parameters is elapsing.

 

IDMT1: Character. neg. PSx

081 113

082 113

083 113

084 113

 

0: Definite Time

Fig. 3-125

 

IDMT2: Character. neg. PSx

081 123

082 123

083 123

084 123

 

0: Definite Time

 

 

Setting for the tripping characteristic (negative-sequence current system).

 

IDMT1: Factor kt,neg PSx

081 114

082 114

083 114

084 114

 

1.00

0.05

10.00

 

Fig. 3-125

 

IDMT2: Factor kt,neg PSx

081 124

082 124

083 124

084 124

 

1.00

0.05

10.00

 

 

 

Setting for the factor kt,neg of the starting characteristic (negative-sequence current system).

 

IDMT1: Min. trip t. neg PSx

081 117

082 117

083 117

084 117

 

1.00

0.00

10.00

s

Fig. 3-125

 

IDMT2: Min. trip t. neg PSx

081 127

082 127

083 127

084 127

 

1.00

0.00

10.00

s

 

 

Setting for the minimum trip time characteristic (negative-sequence current system).

 

IDMT1: Hold time neg PSx

081 115

082 115

083 115

084 115

 

0.00

0.00

600.00

s

Fig. 3-125

 

IDMT2: Hold time neg PSx

081 125

082 125

083 125

084 125

 

0.00

0.00

600.00

s

 

 

Setting for the hold time for storing the starting time once the starting has dropped out (negative-sequence current system).

 

IDMT1: Release neg PSx

081 116

082 116

083 116

084 116

 

1: Without delay

Fig. 3-125

 

IDMT2: Release neg PSx

081 126

082 126

083 126

084 126

 

1: Without delay

 

 

Setting for the reset characteristic (negative-sequence current system).

 

IDMT1: Iref,N PSx

081 061

082 061

083 061

084 061

 

Blocked

0.01

0.80

Inom

Fig. 3-126

 

IDMT2: Iref,N PSx

081 181

082 181

083 181

084 181

 

Blocked

0.01

0.80

Inom

 

 

Setting for the reference current (residual current system).

 

IDMT1: Iref,N dynamic PSx

081 062

082 062

083 062

084 062

 

Blocked

0.01

0.80

Inom

Fig. 3-126

 

IDMT2: Iref,N dynamic PSx

081 182

082 182

083 182

084 182

 

Blocked

0.01

0.80

Inom

 

 

Setting for the reference current (residual current system) in dynamic mode.  This operate value is only effective while the hold time for dynamic parameters is elapsing.

 

IDMT1: Characteristic N PSx

081 063

082 063

083 063

084 063

 

0: Definite Time

Fig. 3-126

 

IDMT2: Characteristic N PSx

081 183

082 183

083 183

084 183

 

0: Definite Time

 

 

Setting for the tripping characteristic (residual current system).

 

IDMT1: Factor kt,N PSx

081 064

082 064

083 064

084 064

 

1.00

0.05

10.00

 

Fig. 3-126

 

IDMT2: Factor kt,N PSx

081 184

082 184

083 184

084 184

 

1.00

0.05

10.00

 

 

 

Setting for the kt,N factor of the starting characteristic (residual current system).

 

IDMT1: Min. trip t. N PSx

081 067

082 067

083 067

084 067

 

1.00

0.00

10.00

s

Fig. 3-126

 

IDMT2: Min. trip t. N PSx

081 187

082 187

083 187

084 187

 

1.00

0.00

10.00

s

 

 

Setting for the minimum trip time characteristic (residual current system).

 

IDMT1: Hold time N PSx

081 065

082 065

083 065

084 065

 

0.00

0.00

600.00

s

Fig. 3-126

 

IDMT2: Hold time N PSx

081 185

082 185

083 185

084 185

 

0.00

0.00

600.00

s

 

 

Setting for the hold time for storing the starting time once the starting has dropped out (residual current system).

 

IDMT1: Release N PSx

081 066

082 066

083 066

084 066

 

1: Without delay

Fig. 3-126

 

IDMT2: Release N PSx

081 186

082 186

083 186

084 186

 

1: Without delay

 

 

Setting for the reset characteristic (residual current system).

 

Parameter

Address

 

Default

Min

Max

Unit

Logic Diagram

Thermal overload pro­tec­tion

THRM1: Enable PSx

081 070

082 070

083 070

084 070

 

0: No

Fig. 3-131

 

This setting defines the parameter subset in which thermal overload protection is enabled.

 

THRM1: Iref PSx

081 074

082 074

083 074

084 074

 

1.00

0.10

4.00

Inom

Fig. 3-135

 

Setting for the reference current.

 

THRM1: Start.fact.OL_RC PSx

081 075

082 075

083 075

084 075

 

1.15

1.05

1.50

 

Fig. 3-135

 

Starting factor k must be set in accordance with the maximum permissible continuous thermal current of the protected object:

k=Itherm,prot.object/Inom,prot.object

 

THRM1: Tim.const.1,>Ibl PSx

081 082

082 082

083 082

084 082

 

30.0

1.0

1000.0

min

Fig. 3-135

 

Setting for the thermal time constants of the protected object with current flow (Ibl: base line current).

 

THRM1: Tim.const.2,<Ibl PSx

081 083

082 083

083 083

084 083

 

30.0

1.0

1000.0

min

Fig. 3-135

 

Setting for the thermal time constants of the protected object without current flow (Ibl: base line current).

Note: This setting option is only relevant when machines are running.  In all other cases, time constant 2 must be set equal to time constant 1.

 

THRM1: Max.perm.obj.tmp.PSx

081 077

082 077

083 077

084 077

 

120

0

300

°C

Fig. 3-135

 

Setting for the maximum permissible temperature of the protected object.

 

THRM1: Max.perm.cool.tmpPSx

081 080

082 080

083 080

084 080

 

40

0

70

°C

Fig. 3-135

 

Setting for the maximum permissible coolant temperature.

Note: This setting is active only if the coolant temperature is measured via the PT 100 or the 20 mA input.

 

THRM1: Select CTA PSx

081 072

082 072

083 072

084 072

 

0: Default temp. value

Fig. 3-134

 

Select the mode of the coolant temperature acquisition. Select from:

No data acquisition. A default temperature value is used instead,

data acquisition via the PT 100 input,

data acquisition via the 20 mA input.

 

THRM1: Default CTA PSx

081 081

082 081

083 081

084 081

 

40

-40

70

°C

Fig. 3-135

 

Setting for the coolant temperature to be used for calculation of the trip time if there is no data acquisition for the coolant temperature.

 

THRM1: Bl. f. CTA fault PSx

081 073

082 073

083 073

084 073

 

1: Yes

Fig. 3-134

 

This setting specifies whether the thermal overload protection function will be blocked in the event of faulty coolant temperature acquisition.

 

THRM1: Rel. O/T warning PSx

081 079

082 079

083 079

084 079

 

95

50

200

%

Fig. 3-135

 

Setting for the operate value of the warning stage.

 

THRM1: Rel. O/T trip PSx

081 076

082 076

083 076

084 076

 

100

50

200

%

Fig. 3-135

 

Setting for the operate value of the trip stage.

Note: If the operating mode has been set to Absolute replica, the setting here will be automatically set to 100% and this parameter will be hidden as far as the local control panel is concerned.

 

THRM1: Hysteresis trip PSx

081 078

082 078

083 078

084 078

 

2

2

30

%

Fig. 3-135

 

Setting for the hysteresis of the trip stage.

 

THRM1: Warning pre-trip PSx

081 085

082 085

083 085

084 085

 

30.0

0.0

1000.0

min

Fig. 3-135

 

A warning will be given in advance of the trip. The time difference between the warning time and the trip time is set here.

 

Parameter

Address

 

Default

Min

Max

Unit

Logic Diagram

Time-voltage pro­tec­tion

V<>: Enable PSx

076 000

077 000

078 000

079 000

 

0: No

Fig. 3-137

 

This setting defines the setting group in which V<> protection is enabled.

 

V<>: V> PSx

076 003

077 003

078 003

079 003

 

1.10

0.20

1.50

Vnom

Fig. 3-138

 

Setting for operate value V>.

 

V<>: V>> PSx

076 004

077 004

078 004

079 004

 

1.10

0.20

1.50

Vnom

Fig. 3-138

 

Setting for operate value V>>.

 

V<>: tV> PSx

076 005

077 005

078 005

079 005

 

1.00

0.00

100.00

s

Fig. 3-138

 

Setting for the operate delay of overvoltage stage V>.

 

V<>: tV>> PSx

076 006

077 006

078 006

079 006

 

1.00

0.00

100.00

s

Fig. 3-138

 

Setting for the operate delay of overvoltage stage V>>.

 

V<>: V< PSx

076 007

077 007

078 007

079 007

 

0.80

0.20

1.50

Vnom

Fig. 3-139

 

Setting for operate value V<.

 

V<>: V<< PSx

076 008

077 008

078 008

079 008

 

0.80

0.20

1.50

Vnom

Fig. 3-139

 

Setting for operate value V<<.

 

V<>: Vmin> PSx

076 046

077 046

078 046

079 046

 

0.25

0.00

0.60

Vnom

Fig. 3-139

 

Setting for the operate value Vmin>.

 

V<>: tV< PSx

076 009

077 009

078 009

079 009

 

1.00

0.00

100.00

s

Fig. 3-139

 

Setting for the operate delay of undervoltage stage V<.

 

V<>: tV<< PSx

076 010

077 010

078 010

079 010

 

1.00

0.00

100.00

s

Fig. 3-139

 

Setting for the operate delay of undervoltage stage V<<.

 

V<>: tTransient PSx

076 029

077 029

078 029

079 029

 

1.00

0.00

100.00

s

Fig. 3-139

 

Setting for the time limit of the signals generated by the undervoltage stages.

 

V<>: Hyst. V<> meas. PSx

076 048

077 048

078 048

079 048

 

3

1

10

%

Fig. 3-138

 

Setting for the hysteresis of the trigger stages for monitoring measured voltages.

 

Parameter

Address

 

Default

Min

Max

Unit

Logic Diagram

Over-/underfrequency pro­tec­tion

f<>: Enable PSx

018 196

018 197

018 198

018 199

 

0: No

Fig. 3-140

 

This setting defines the parameter subset in which over-/underfrequency protection is enabled.

 

f<>: Oper. mode f1 PSx

018 120

018 121

018 122

018 123

 

1: f

Fig. 3-143

 

f<>: Oper. mode f2 PSx

018 144

018 145

018 146

018 147

 

1: f

 

 

f<>: Oper. mode f3 PSx

018 168

018 169

018 170

018 171

 

1: f

 

 

f<>: Oper. mode f4 PSx

018 192

018 193

018 194

018 195

 

1: f

 

 

Setting for the operating mode of the timer stages of over-/underfrequency protection.

 

f<>: f1 PSx

018 100

018 101

018 102

018 103

 

49.80

40.00

70.00

Hz

Fig. 3-143

 

f<>: f2 PSx

018 124

018 125

018 126

018 127

 

49.80

40.00

70.00

Hz

 

 

f<>: f3 PSx

018 148

018 149

018 150

018 151

 

49.80

40.00

70.00

Hz

 

 

f<>: f4 PSx

018 172

018 173

018 174

018 175

 

49.80

40.00

70.00

Hz

 

 

Setting for the frequency threshold.  The over-/underfrequency protection function will operate if one of the following two conditions applies:  The threshold is higher than the set nominal frequency and the frequency exceeds this threshold.  The threshold is lower than the set nominal frequency and the frequency falls below this threshold.  Depending on the chosen operating mode, either a signal is issued without further monitoring, or further monitoring mechanisms are started.

 

f<>: tf1 PSx

018 104

018 105

018 106

018 107

 

0.00

0.00

10.00

s

Fig. 3-143

 

f<>: tf2 PSx

018 128

018 129

018 130

018 131

 

0.00

0.00

10.00

s

 

 

f<>: tf3 PSx

018 152

018 153

018 154

018 155

 

0.00

0.00

10.00

s

 

 

f<>: tf4 PSx

018 176

018 177

018 178

018 179

 

0.00

0.00

10.00

s

 

 

Setting for the operate delay of over-/underfrequency protection.

 

f<>: df1/dt PSx

018 108

018 109

018 110

018 111

 

2.0

0.1

10.0

Hz/s

Fig. 3-143

 

f<>: df2/dt PSx

018 132

018 133

018 134

018 135

 

2.0

0.1

10.0

Hz/s

 

 

f<>: df3/dt PSx

018 156

018 157

018 158

018 159

 

2.0

0.1

10.0

Hz/s

 

 

f<>: df4/dt PSx

018 180

018 181

018 182

018 183

 

2.0

0.1

10.0

Hz/s

 

 

Setting for the frequency gradient to be monitored.

Note: This setting is ineffective unless operating mode f with df/dt has been selected.

 

f<>: Delta f1 PSx

018 112

018 113

018 114

018 115

 

0.30

0.01

5.00

Hz

Fig. 3-143

 

f<>: Delta f2 PSx

018 136

018 137

018 138

018 139

 

0.30

0.01

5.00

Hz

 

 

f<>: Delta f3 PSx

018 160

018 161

018 162

018 163

 

0.30

0.01

5.00

Hz

 

 

f<>: Delta f4 PSx

018 184

018 185

018 186

018 187

 

0.30

0.01

5.00

Hz

 

 

Setting for Delta f.

Note: This setting is ineffective unless operating mode f w. Delta f/Delta t has been selected.

 

f<>: Delta t1 PSx

018 116

018 117

018 118

018 119

 

0.30

0.04

3.00

s

Fig. 3-143

 

f<>: Delta t2 PSx

018 140

018 141

018 142

018 143

 

0.30

0.04

3.00

s

 

 

f<>: Delta t3 PSx

018 164

018 165

018 166

018 167

 

0.30

0.04

3.00

s

 

 

f<>: Delta t4 PSx

018 188

018 189

018 190

018 191

 

0.30

0.04

3.00

s

 

 

Setting for Delta t.

Note: This setting is ineffective unless operating mode f w. Delta f/Delta t has been selected.

 

Parameter

Address

 

Default

Min

Max

Unit

Logic Diagram

Overfluxing pro­tec­tion

V/f: Enable PSx

081 210

082 210

083 210

084 210

 

0: No

Fig. 3-144

 

This setting defines the parameter subset in which overfluxing protection is enabled.

 

V/f: V/f> (alarm) PSx

081 211

082 211

083 211

084 211

 

1.05

1.00

1.20

Vnom/fnom

 

 

Setting for the operate value of the warning stage.

 

V/f: V/f(t)> PSx

081 212

082 212

083 212

084 212

 

1.10

1.05

1.50

Vnom/fnom

Fig. 3-150

 

Setting for the operate value of the time-dependent elements.

 

V/f: V/f>> PSx

081 213

082 213

083 213

084 213

 

Blocked

1.05

1.60

Vnom/fnom

Fig. 3-147

 

Setting for the operate value of the time-independent elements.

 

V/f: tV/f> PSx

081 214

082 214

083 214

084 214

 

1

0

10000

s

 

 

Setting for the operate delay of the warning stage.

 

V/f: t at V/f=1.05 PSx

081 217

082 217

083 217

084 217

 

72.8

1.0

6000.0

s

Fig. 3-150

 

V/f: t at V/f=1.10 PSx

081 218

082 218

083 218

084 218

 

18.8

1.0

6000.0

s

Fig. 3-150

 

V/f: t at V/f=1.15 PSx

081 219

082 219

083 219

084 219

 

8.8

1.0

6000.0

s

Fig. 3-150

 

V/f: t at V/f=1.20 PSx

081 220

082 220

083 220

084 220

 

5.3

1.0

6000.0

s

Fig. 3-150

 

V/f: t at V/f=1.25 PSx

081 221

082 221

083 221

084 221

 

3.7

1.0

6000.0

s

Fig. 3-150

 

V/f: t at V/f=1.30 PSx

081 222

082 222

083 222

084 222

 

2.8

1.0

6000.0

s

Fig. 3-150

 

V/f: t at V/f=1.35 PSx

081 223

082 223

083 223

084 223

 

2.3

1.0

6000.0

s

Fig. 3-150

 

V/f: t at V/f=1.40 PSx

081 224

082 224

083 224

084 224

 

1.9

1.0

6000.0

s

Fig. 3-150

 

V/f: t at V/f=1.45 PSx

081 225

082 225

083 225

084 225

 

1.7

1.0

6000.0

s

Fig. 3-150

 

V/f: t at V/f=1.50 PSx

081 226

082 226

083 226

084 226

 

1.5

1.0

6000.0

s

Fig. 3-150

 

V/f: t at V/f=1.55 PSx

081 227

082 227

083 227

084 227

 

1.4

1.0

6000.0

s

Fig. 3-150

 

V/f: t at V/f=1.60 PSx

081 228

082 228

083 228

084 228

 

1.3

1.0

6000.0

s

Fig. 3-150

 

The value pairs set here for overfluxing and trip time define the tripping characteristic of the inverse-time trip stage for overfluxing protection.

The value set at V/f = 1.60 is also valid for V/f > 1.60.

 

V/f: Reset time PSx

081 230

082 230

083 230

084 230

 

0

0

60000

s

Fig. 3-150

 

The value set here for the reset time defines the decreasing rate for the overfluxing protection memory.

 

V/f: tV/f>> PSx

081 229

082 229

083 229

084 229

 

Blocked

0

10000

s

Fig. 3-147

 

Setting for the operate delay of the definite-time trip stage.

 

Parameter

Address

 

Default

Min

Max

Unit

Logic Diagram

Cur­rent transformer supervision

CTS: Enable PSx

001 118

001 119

001 120

001 121

 

0: No

Fig. 3-152

 

This setting defines the parameter subset in which current transformer supervision (CTS) is enabled.

 

CTS: Ipos> PSx

001 111

001 115

001 116

001 117

 

0.10

0.05

4.00

Iref

Fig. 3-154

 

Setting for operate value Ipos> as a quantity normalized to Iref. (Ipos = positive-sequence current)

 

CTS: Ineg/Ipos> PSx

001 102

001 103

001 104

001 105

 

0.05

0.05

1.00

 

Fig. 3-154

 

CTS: Ineg/Ipos>> PSx

001 122

001 123

001 124

001 125

 

0.40

0.05

1.00

 

Fig. 3-154

 

Setting for the operate value for the ratio Ineg/Ipos. (Ineg = negative-sequence current, Ipos = positive-sequence current)

 

CTS: t(Alarm) PSx

001 126

001 127

001 128

001 129

 

1.00

0.00

10.00

s

Fig. 3-157

Fig. 3-158

 

Setting for the operate delay.

 

CTS: t(Latch) PSx

001 130

001 131

001 132

001 133

 

1.00

0.00

10.00

s

Fig. 3-157

Fig. 3-158

 

Setting for the latching time-delay.

 

Parameter

Address

 

Default

Min

Max

Unit

Logic Diagram

Measuring-circuit monitoring

MCM_1: Enable PSx

081 038

082 038

083 038

084 038

 

0: No

 

 

MCM_2: Enable PSx

081 039

082 039

083 039

084 039

 

0: No

 

 

This setting defines the parameter subset in which measuring-circuit monitoring is enabled.

 

MCM_1: Ineg/Ipos> PSx

081 042

082 042

083 042

084 042

 

0.30

0.20

1.00

 

Fig. 3-160

 

MCM_2: Ineg/Ipos> PSx

081 043

082 043

083 043

084 043

 

0.30

0.20

1.00

 

 

 

Setting for the operate value for the ratio Ineg/Ipos.

(Ineg = negative-sequence current, Ipos = positive-sequence current)

 

MCM_1: Operate delay PSx

081 046

082 046

083 046

084 046

 

5.00

0.10

100.00

s

Fig. 3-160

 

MCM_2: Operate delay PSx

081 047

082 047

083 047

084 047

 

5.00

0.10

100.00

s

 

 

Setting for the operate delay.